151-5197-5087
扬州华为授权服务中心
当前位置:网站首页 > 智能化工程 正文 智能化工程

【人工智能】Transformers之Pipeline(二十五):图片特征抽取(image-feature-extraction)

2024-11-29 23:19:18 智能化工程 24 ℃ 0 评论

​​​​​​​

目录

一、引言 

二、图片特征抽取(image-feature-extraction)

2.1 概述

2.2 google/ViT

2.3 pipeline参数

2.3.1 pipeline对象实例化参数

2.3.2 pipeline对象使用参数 

2.4 pipeline实战

2.5 模型排名

三、总结


一、引言 

pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为音频(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks)。共计覆盖32万个模型

今天介绍多模态的第三篇:图片特征抽取(image-feature-extraction),在huggingface库内有300个图片特征抽取(image-feature-extraction)模型。

二、图片特征抽取(image-feature-extraction)

2.1 概述

图片特征抽取(image-feature-extraction)用途非常广泛,指将图片、视频抽帧等多模态内容向量化,在图片视频内容相似比对、推荐模型、迁移学习、检索排序、RAG等场景非常常用。

常用的图片特征抽取方法从最早期的CNN,到对比学习SimCLR、clip,再到ViT经过多年发展,已将可以较为准确将图片转化为特征向量,用于下游业务。

2.2 google/ViT

以google在2021年6月3日发布的Vision Transformer (ViT)为例,传统的图片识别通过CNN卷机神经网络提取图片信息,ViT将Transformer技术应用到图片分类上,开启了Transformer应用于计算机视觉的先河。该模型也是图片特征抽取(image-feature-extraction)任务的默认模型:google/vit-base-patch16-224

ViT(视觉transformer)主要原理:首先将图片切分成大小相等的块序列(分辨率为16*16),对每个图片块进行线性嵌入添加位置信息,通过喂入一个标准的transformer encoder结构进行特征交叉后,送入到MLP层,通过增加额外的分类标记构建分类任务,完成网络构造。详细论文 

2.3 pipeline参数

2.3.1 pipeline对象实例化参数

  • model(PreTrainedModel或TFPreTrainedModel)— 管道将使用其进行预测的模型。 对于 PyTorch,这需要从PreTrainedModel继承;对于 TensorFlow,这需要从TFPreTrainedModel继承。
  • image_processor ( BaseImageProcessor ) — 管道将使用的图像处理器来为模型编码数据。此对象继承自 BaseImageProcessor。
  • modelcardstrModelCard可选) — 属于此管道模型的模型卡。
  • frameworkstr可选)— 要使用的框架,"pt"适用于 PyTorch 或"tf"TensorFlow。必须安装指定的框架。
  • taskstr,默认为"")— 管道的任务标识符。
  • num_workersint可选,默认为 8)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的工作者数量。
  • batch_sizeint可选,默认为 1)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的批次的大小,对于推理来说,这并不总是有益的,请阅读使用管道进行批处理。
  • args_parser(ArgumentHandler,可选) - 引用负责解析提供的管道参数的对象。
  • deviceint可选,默认为 -1)— CPU/GPU 支持的设备序号。将其设置为 -1 将利用 CPU,设置为正数将在关联的 CUDA 设备 ID 上运行模型。您可以传递本机torch.devicestr
  • torch_dtypestrtorch.dtype可选) - 直接发送model_kwargs(只是一种更简单的快捷方式)以使用此模型的可用精度(torch.float16,,torch.bfloat16...或"auto"
  • binary_outputbool可选,默认为False)——标志指示管道的输出是否应以序列化格式(即 pickle)或原始输出数据(例如文本)进行。
  • image_processor_kwargsdict可选) - 传递给图像处理器的关键字参数的附加词典,例如 {“size”:{“height”:100,“width”:100}‌}
  • poolbool可选,默认为False)— 是否返回池化输出。如果是False,模型将返回原始隐藏状态。

2.3.2 pipeline对象使用参数 

  • imagesstr、或)——管道处理三种类型的图像List[str]PIL.ImageList[PIL.Image]

    • 包含指向图像的 http 链接的字符串
    • 包含图像本地路径的字符串
    • 直接在 PIL 中加载的图像

    管道可以接受单张图片或一批图片,然后必须以字符串形式传递。一批图片必须全部采用相同的格式:全部为 http 链接、全部为本地路径或全部为 PIL 图片。

  • timeout可选float,默认为 None)— 等待从网络获取图像的最长时间(以秒为单位)。如果为 None,则不使用超时,并且调用可能会永远阻塞。

2.4 pipeline实战

基于pipeline的图片特征抽取(image-feature-extraction)任务,采用google/vit-base-patch16-224进行文本特征抽取,代码如下:

import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

from transformers import pipeline
feature_extractor = pipeline("feature-extraction", framework="pt", model="facebook/bart-base")
text = "Transformers is an awesome library!"

output=feature_extractor(text,return_tensors = "pt")
print(output)

执行后,自动下载模型文件并进行识别:

2.5 模型排名

在huggingface上,我们将图片特征抽取(image-feature-extraction)模型按下载量从高到低排序,总计400个模型,vit排名第一。

​​​​​​​

三、总结

本文对transformers之pipeline的图片特征抽取(image-feature-extraction)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用多模态中的图片特征抽取(image-feature-extraction)模型。

期待您的3连+关注,如何还有时间,欢迎阅读我的其他文章:

《Transformers-Pipeline概述》

【人工智能】Transformers之Pipeline(概述):30w+大模型极简应用

《Transformers-Pipeline 第一章:音频(Audio)篇》

【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)

【人工智能】Transformers之Pipeline(二):自动语音识别(automatic-speech-recognition)

【人工智能】Transformers之Pipeline(三):文本转音频(text-to-audio/text-to-speech)

【人工智能】Transformers之Pipeline(四):零样本音频分类(zero-shot-audio-classification)

《Transformers-Pipeline 第二章:计算机视觉(CV)篇》

【人工智能】Transformers之Pipeline(五):深度估计(depth-estimation)

【人工智能】Transformers之Pipeline(六):图像分类(image-classification)

【人工智能】Transformers之Pipeline(七):图像分割(image-segmentation)

【人工智能】Transformers之Pipeline(八):图生图(image-to-image)

【人工智能】Transformers之Pipeline(九):物体检测(object-detection)

【人工智能】Transformers之Pipeline(十):视频分类(video-classification)

【人工智能】Transformers之Pipeline(十一):零样本图片分类(zero-shot-image-classification)

【人工智能】Transformers之Pipeline(十二):零样本物体检测(zero-shot-object-detection)​​​​​​​

《Transformers-Pipeline 第三章:自然语言处理(NLP)篇》

【人工智能】Transformers之Pipeline(十三):填充蒙版(fill-mask)​​​​​​​

【人工智能】Transformers之Pipeline(十四):问答(question-answering)

【人工智能】Transformers之Pipeline(十五):总结(summarization)

【人工智能】Transformers之Pipeline(十六):表格问答(table-question-answering)

【人工智能】Transformers之Pipeline(十七):文本分类(text-classification)

【人工智能】Transformers之Pipeline(十八):文本生成(text-generation)​​​​​​​

【人工智能】Transformers之Pipeline(十九):文生文(text2text-generation)

【人工智能】Transformers之Pipeline(二十):令牌分类(token-classification)

【人工智能】Transformers之Pipeline(二十一):翻译(translation)

【人工智能】Transformers之Pipeline(二十二):零样本文本分类(zero-shot-classification)

《Transformers-Pipeline 第四章:多模态(Multimodal)篇》

【人工智能】Transformers之Pipeline(二十三):文档问答(document-question-answering)​​​​​​​

【人工智能】Transformers之Pipeline(二十四):特征抽取(feature-extraction)​​​​​​​

【人工智能】Transformers之Pipeline(二十五):图片特征抽取(image-feature-extraction)​​​​​​​

【人工智能】Transformers之Pipeline(二十六):图片转文本(image-to-text)

【人工智能】Transformers之Pipeline(二十七):掩码生成(mask-generation)

【人工智能】Transformers之Pipeline(二十八):视觉问答(visual-question-answering)

版权说明:如非注明,本站文章均为 扬州驻场服务-网络设备调试-监控维修-南京泽同信息科技有限公司 原创,转载请注明出处和附带本文链接

请在这里放置你的在线分享代码
«    2024年12月    »
1
2345678
9101112131415
16171819202122
23242526272829
3031
控制面板
您好,欢迎到访网站!
  查看权限
网站分类
搜索
最新留言
    文章归档
    网站收藏
    友情链接