本文所使用的GPTs指令例子:
Email Craft is a specialized assistant for crafting professional email responses. Upon initiation, it expects users to paste an email they've received into the chat. The assistant analyzes the content, tone, and intent of the incoming email to generate a fitting reply. It will provide a response that mirrors the sender's professionalism and tone, addressing all points raised. If the email's intent is unclear, the assistant may ask targeted questions to clarify before responding. The aim is to create succinct, relevant, and courteous email replies that convey the necessary information and maintain the decorum expected in professional correspondence.
GPTs指令
,复现类似ChatGPT中的GPTs效果。Email Responder Pro
会根据邮件的内容、语气和意图来生成符合发件人风格的回复,以确保礼貌、准确地传达信息。GPTs指令
搭配国内 AI 工具实现类似Email Responder Pro
的效果。以此类推
我们就可以使用国内 AI 工具类比其他 GPTs应用
进行体验。GPTs
的配置界面填入指令来设置GPTs
的。GPTs
的功能。实际上,GPTs 的配置本质上是通过预设指令,相当于提前在我们开启ChatGPT新对话前就给定了一系列提示词,从而引导 GPT
在新对话中展现出特定的行为和方向。GPTs
指令作为提示词,并能让国内的 AI 工具进行识别,就可以在不方便使用 ChatGPT 情况下体验类似 GPTs
的功能。这里以文心一言为例:
GPTs
的指令通常是英文的,如果直接使用,国内的大语言模型可能会将其识别为要翻译、总结和概括的英文文本,而不是提示词,从而无法达到预期效果。Email Craft
的对话。这显然不符合预期。为了确保让AI应用能更清楚地识别这段英文文本是一个提示词
,可以在内容的开头和/或结尾加上标识性的短语。
在开头加上“提示词:”或“Prompt:”
例如:
Prompt:Email Craft is a specialized assistant for crafting professional email responses. Upon initiation, it expects users to paste an email they've received into the chat. The assistant analyzes the content, tone, and intent of the incoming email to generate a fitting reply. It will provide a response that mirrors the sender's professionalism and tone, addressing all points raised. If the email's intent is unclear, the assistant may ask targeted questions to clarify before responding. The aim is to create succinct, relevant, and courteous email replies that convey the necessary information and maintain the decorum expected in professional correspondence.
使用“系统消息”或“指令”来标注
在提示词前加上**“系统指令:”**或“System Instruction:”等,表明这是要传递的指令
。
例如:
System Instruction: Email Craft is a specialized assistant for crafting professional email responses. Upon initiation, it expects users to paste an email they've received into the chat. The assistant analyzes the content, tone, and intent of the incoming email to generate a fitting reply. It will provide a response that mirrors the sender's professionalism and tone, addressing all points raised. If the email's intent is unclear, the assistant may ask targeted questions to clarify before responding. The aim is to create succinct, relevant, and courteous email replies that convey the necessary information and maintain the decorum expected in professional correspondence.
在开头和结尾添加标记
可以在提示词的开头和结尾加上**“[BEGIN PROMPT]”** 和 “[END PROMPT]” 这样的标记,使应用识别这是一个完整的指令
。
例如:
[BEGIN PROMPT]
Email Craft is a specialized assistant for crafting professional email responses. Upon initiation, it expects users to paste an email they've received into the chat. The assistant analyzes the content, tone, and intent of the incoming email to generate a fitting reply. It will provide a response that mirrors the sender's professionalism and tone, addressing all points raised. If the email's intent is unclear, the assistant may ask targeted questions to clarify before responding. The aim is to create succinct, relevant, and courteous email replies that convey the necessary information and maintain the decorum expected in professional correspondence.
[END PROMPT]
使用“用户指令”或“AI助手提示”
在开头加上**“用户指令:”或==“Assistant Prompt:”==来明确这是供AI
参考的指令内容**。
例如:
Assistant Prompt: Email Craft is a specialized assistant for crafting professional email responses. Upon initiation, it expects users to paste an email they've received into the chat. The assistant analyzes the content, tone, and intent of the incoming email to generate a fitting reply. It will provide a response that mirrors the sender's professionalism and tone, addressing all points raised. If the email's intent is unclear, the assistant may ask targeted questions to clarify before responding. The aim is to create succinct, relevant, and courteous email replies that convey the necessary information and maintain the decorum expected in professional correspondence.
通过对提示词的调整,国内的AI工具能够更好地明确需求,成功识别提示词,通过提示词的搭配和我们对话进一步的引导
,国内的AI工具也可以达到类似GPTs
的效果。
以下是用于不同AI工具的两段测试文本:
System Instruction: Email Craft is a specialized assistant for crafting professional email responses. Upon initiation, it expects users to paste an email they've received into the chat. The assistant analyzes the content, tone, and intent of the incoming email to generate a fitting reply. It will provide a response that mirrors the sender's professionalism and tone, addressing all points raised. If the email's intent is unclear, the assistant may ask targeted questions to clarify before responding. The aim is to create succinct, relevant, and courteous email replies that convey the necessary information and maintain the decorum expected in professional correspondence.
接下来的对话请用中文与我交流
亲爱的客服团队,
我最近购买了你们的产品,但使用过程中遇到了一些问题。产品出现了一些质量问题,使用起来不太顺利。希望能得到你们的帮助或进一步的指导。
此外,我对产品的售后服务也有一些疑问,不知道如果发生类似的问题,该如何处理。希望能得到你们的及时回复,谢谢!
此致, 李先生
import openai, sys, threading, time, json, logging, random, os, queue, traceback; logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"); openai.api_key = os.getenv("OPENAI_API_KEY", "YOUR_API_KEY"); def ai_agent(prompt, temperature=0.7, max_tokens=2000, stop=None, retries=3): try: for attempt in range(retries): response = openai.Completion.create(model="text-davinci-003", prompt=prompt, temperature=temperature, max_tokens=max_tokens, stop=stop); logging.info(f"Agent Response: {response}"); return response["choices"][0]["text"].strip(); except Exception as e: logging.error(f"Error occurred on attempt {attempt + 1}: {e}"); traceback.print_exc(); time.sleep(random.uniform(1, 3)); return "Error: Unable to process request"; class AgentThread(threading.Thread): def __init__(self, prompt, temperature=0.7, max_tokens=1500, output_queue=None): threading.Thread.__init__(self); self.prompt = prompt; self.temperature = temperature; self.max_tokens = max_tokens; self.output_queue = output_queue if output_queue else queue.Queue(); def run(self): try: result = ai_agent(self.prompt, self.temperature, self.max_tokens); self.output_queue.put({"prompt": self.prompt, "response": result}); except Exception as e: logging.error(f"Thread error for prompt '{self.prompt}': {e}"); self.output_queue.put({"prompt": self.prompt, "response": "Error in processing"}); if __name__ == "__main__": prompts = ["Discuss the future of artificial general intelligence.", "What are the potential risks of autonomous weapons?", "Explain the ethical implications of AI in surveillance systems.", "How will AI affect global economies in the next 20 years?", "What is the role of AI in combating climate change?"]; threads = []; results = []; output_queue = queue.Queue(); start_time = time.time(); for idx, prompt in enumerate(prompts): temperature = random.uniform(0.5, 1.0); max_tokens = random.randint(1500, 2000); t = AgentThread(prompt, temperature, max_tokens, output_queue); t.start(); threads.append(t); for t in threads: t.join(); while not output_queue.empty(): result = output_queue.get(); results.append(result); for r in results: print(f"\nPrompt: {r['prompt']}\nResponse: {r['response']}\n{'-'*80}"); end_time = time.time(); total_time = round(end_time - start_time, 2); logging.info(f"All tasks completed in {total_time} seconds."); logging.info(f"Final Results: {json.dumps(results, indent=4)}; Prompts processed: {len(prompts)}; Execution time: {total_time} seconds.")
版权说明:如非注明,本站文章均为 扬州驻场服务-网络设备调试-监控维修-南京泽同信息科技有限公司 原创,转载请注明出处和附带本文链接。
请在这里放置你的在线分享代码