151-5197-5087
扬州华为授权服务中心
当前位置:网站首页 > 智能化工程 正文 智能化工程

详细记录swfit微调interVL2-8B多模态大模型进行目标检测(附代码)

2024-11-29 23:13:49 智能化工程 31 ℃ 0 评论

大模型相关目录

大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容
从0起步,扬帆起航。

  1. RAGOnMedicalKG:大模型结合知识图谱的RAG实现
  2. DSPy:变革式大模型应用开发
  3. 最简明的Few-shot Prompt指南
  4. Semantic Kernel:微软大模型开发框架——LangChain 替代
  5. 对话大模型Prompt是否需要礼貌点?
  6. swift与Internvl下的多模态大模型分布式微调指南(附代码和数据)
  7. 多模态大模型Internvl-1.5-26B微调后部署及测试实录(附代码)
  8. 多模态大模型Internvl-2-26B的OCR赋能方案(附代码)
  9. miniconda+xinference的大模型推理部署指南
  10. Mem0:大模型最强赋能“有记忆的LLM”
  11. 再谈Agent:Dify智能体实现Txet2SQL
  12. Moe模式:或将是最好的大模型应用开发路径
  13. 一文带你了解大模型RAG
  14. 详细记录swfit微调interVL2-8B多模态大模型进行目标检测(附代码)

文章目录

  • 大模型相关目录
  • 前言
  • 模型选型
  • 数据集制作
  • 模型微调
  • 训练后的模型部署及测试
      • 合并权重
      • 推理部署
      • 测试
  • 总结


前言

目标检测任务已经不是一个新鲜事了,但是多模态大模型作目标检测任务并不多见,本文详细记录swfit微调interVL2-8B多模态大模型进行目标检测的过程,旨在让更多人了解多模态大模型微调技术、共享微调经验。

模型选型

并不是所有开源多模态大模型都有目标检测能力。

如图所示,哪怕是闭源模型,也并都不具备目标检测能力。
经调研,我们选用interVL2-8B模型,在模型性能指标上,该模型胜过interVL1.5-26B的同时,还具备目标检测能力,且与interVL2-26B、40B、70B模型性能差不并没有非常巨大。

其回答格式也很有意思,此处分享:

<ref>zs_code</ref><box>[[476,1221,814,1259]]</box>

数据集制作

本文任务数据集均为自行制作,其中,数据分布如下图:

其中,test文件夹用于性能测试,tain文件夹用于模型训练。pic子文件夹表示图像存储路径,xml表示标注存储路径,图像与标注一一对应。

具体内容如下:

图像示例:

对应标注示例

<annotation>
	<folder>code_data</folder>
	<filename>xxx-本科毕业证.jpg</filename>
	<path>C:\Users\12258\Desktop\code_data\xxx-本科毕业证.jpg</path>
	<source>
		<database>Unknown</database>
	</source>
	<size>
		<width>842</width>
		<height>596</height>
		<depth>3</depth>
	</size>
	<segmented>0</segmented>
	<object>
		<name>zs_code</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>142</xmin>
			<ymin>422</ymin>
			<xmax>351</xmax>
			<ymax>446</ymax>
		</bndbox>
	</object>
</annotation>

该数据集使用labelimg手动标注,每张图像为典型毕业证、学位证、学历验证、资质证书影像,只含一个标签名称zs_code。

其中,测试图像30张,训练图像250张。

编写脚本,构建可用于微调训练的数据集jsonl,jsonl配合图像即可完成swift框架下的多模态模型微调。

import os
import random
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from PIL import Image
import json
from PIL import Image, ExifTags
import xml.etree.ElementTree as ET


def create_directory(path):
    """Create a new directory at the given path."""
    try:
        os.makedirs(path, exist_ok=True)
        return f"Directory created at {path}"
    except Exception as e:
        return f"An error occurred: {e}"

def list_files(directory):
    """List all files in the given directory."""
    return [file for file in os.listdir(directory) if os.path.isfile(os.path.join(directory, file))]


def list_files_with_absolute_paths(directory):
    """List all files in the given directory with their absolute paths."""
    return [os.path.abspath(os.path.join(directory, file)) for file in os.listdir(directory) if os.path.isfile(os.path.join(directory, file))]

def extract_xml_info(xml_file_path):
    with open(xml_file_path, 'r',encoding='utf-8') as file:
        xml_content = file.read()

    # 解析XML内容
    root = ET.fromstring(xml_content)

    # 初始化一个列表来保存提取的信息
    extracted_info = []

    # 遍历所有<object>标签
    for obj in root.findall('object'):
        name = obj.find('name').text
        bndbox = obj.find('bndbox')
        xmin = int(bndbox.find('xmin').text)
        ymin = int(bndbox.find('ymin').text)
        xmax = int(bndbox.find('xmax').text)
        ymax = int(bndbox.find('ymax').text)

        # 将提取的信息保存到列表中
        extracted_info.append({'name': name, 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax})
        
    name = str(extracted_info[0]['name'])
    xmin = str(extracted_info[0]['xmin'])
    ymin = str(extracted_info[0]['ymin'])
    xmax = str(extracted_info[0]['xmax'])
    ymax = str(extracted_info[0]['ymax'])
    # 仅仅用于单标注图像
    result = f'<ref>{name}</ref><box>[[{xmin},{ymin},{xmax},{ymax}]]</box>'

    return result

def get_elements_with_string(lst, target_string):
    return [element for element in lst if target_string in element]


train_pic_path = '/home/super/lyq/zsbm_mbjc/data/train/pic'
train_xml_path = '/home/super/lyq/zsbm_mbjc/data/train/xml'
test_pic_path = '/home/super/lyq/zsbm_mbjc/data/test/pic'
test_xml_path = '/home/super/lyq/zsbm_mbjc/data/test/xml'

train_pic_absolute_paths = list_files_with_absolute_paths(train_pic_path)
train_xml_absolute_paths = list_files_with_absolute_paths(train_xml_path)
test_pic_absolute_paths = list_files_with_absolute_paths(test_pic_path)
test_xml_absolute_paths = list_files_with_absolute_paths(test_xml_path)

train_pic_paths = list_files(train_pic_path)
train_xml_paths = list_files(train_xml_path)
test_pic_paths = list_files(test_pic_path)
test_xml_paths = list_files(test_xml_path)




dataset = []

for train_pic_absolute_path in train_pic_absolute_paths:# 图像路径
    mid_dict = {}
    file_head = train_pic_absolute_path.split('/')[-1].split('.')[0]
    # print(file_head,train_pic_absolute_path)
    xml_path = get_elements_with_string(train_xml_absolute_paths,file_head)[0]
    # print(xml_path)
    xml_info = extract_xml_info(xml_path) # response
    mid_dict = {
        'system':'''职位:你是一个面向证书图像的目标检测大师,具备精准识别、定位图像中证书编码的能力。
        职能:从毕业证、学历验证报告、证书等图像中检测到证书编码区域并给出边界框。
        **注意**:仅以给定格式返回检测结果,不要给出其它任何解释。
        **注意**:若图片中没有典型违章场景,返回<ref> class_name </ref><box>[[0, 0, 0, 0]]</box>即可。
        ''',
        'query':'请目标检测图像中的证书编码并给出边界框',
        'response':xml_info,
        'images':train_pic_absolute_path
    }
    
    dataset.append(mid_dict)


# 指定输出文件的名称
output_file = 'train_dataset.jsonl'

# 打开文件并写入JSONL格式的数据
with open(output_file, 'w', encoding='utf-8') as f:
    for item in dataset:
        # 将字典转换为JSON字符串并写入文件,每个字典占一行
        json_string = json.dumps(item,ensure_ascii=False)
        f.write(json_string + '\n')



dataset = []

for test_pic_absolute_path in test_pic_absolute_paths:# 图像路径
    mid_dict = {}
    file_head = test_pic_absolute_path.split('/')[-1].split('.')[0]
    xml_path = get_elements_with_string(test_xml_absolute_paths,file_head)[0]
    xml_info = extract_xml_info(xml_path) # response
    mid_dict = {
        'system':'''职位:你是一个面向证书图像的目标检测大师,具备精准识别、定位图像中证书编码的能力。
        职能:从毕业证、学历验证报告、证书等图像中检测到证书编码区域并给出边界框。
        **注意**:仅以给定格式返回检测结果,不要给出其它任何解释。
        **注意**:若图片中没有典型违章场景,返回<ref> class_name </ref><box>[[0, 0, 0, 0]]</box>即可。
        ''',
        'query':'请目标检测图像中的证书编码并给出边界框',
        'response':xml_info,
        'images':test_pic_absolute_path
    }
    
    dataset.append(mid_dict)



# 指定输出文件的名称
output_file = 'test_dataset.jsonl'

# 打开文件并写入JSONL格式的数据
with open(output_file, 'w', encoding='utf-8') as f:
    for item in dataset:
        # 将字典转换为JSON字符串并写入文件,每个字典占一行
        json_string = json.dumps(item,ensure_ascii=False)
        f.write(json_string + '\n')

上述代码结果为test_dataset.jsonltrain_dataset.jsonl两个jsonl文件,分别对应train、test文件夹。

test_dataset.jsonl

{"system": "职位:你是一个面向证书图像的目标检测大师,具备精准识别、定位图像中证书编码的能力。\n        职能:从毕业证、学历验证报告、证书等图像中检测到证书编码区域并给出边界框。\n        **注意**:仅以给定格式返回检测结果,不要给出其它任何解释。\n        **注意**:若图片中没有典型违章场景,返回<ref> class_name </ref><box>[[0, 0, 0, 0]]</box>即可。\n        ", "query": "请目标检测图像中的证书编码并给出边界框", "response": "<ref>zs_code</ref><box>[[67,761,302,798]]</box>", "images": "/home/super/lyq/zsbm_mbjc/data/train/pic/xxx-专科毕业证.jpg"}
{"system": "职位:你是一个面向证书图像的目标检测大师,具备精准识别、定位图像中证书编码的能力。\n        职能:从毕业证、学历验证报告、证书等图像中检测到证书编码区域并给出边界框。\n        **注意**:仅以给定格式返回检测结果,不要给出其它任何解释。\n        **注意**:若图片中没有典型违章场景,返回<ref> class_name </ref><box>[[0, 0, 0, 0]]</box>即可。\n        ", "query": "请目标检测图像中的证书编码并给出边界框", "response": "<ref>zs_code</ref><box>[[455,1272,1083,1356]]</box>", "images": "/home/super/lyq/zsbm_mbjc/data/train/pic/xxx-本科毕业证.jpg"}
{"system": "职位:你是一个面向证书图像的目标检测大师,具备精准识别、定位图像中证书编码的能力。\n        职能:从毕业证、学历验证报告、证书等图像中检测到证书编码区域并给出边界框。\n        **注意**:仅以给定格式返回检测结果,不要给出其它任何解释。\n        **注意**:若图片中没有典型违章场景,返回<ref> class_name </ref><box>[[0, 0, 0, 0]]</box>即可。\n        ", "query": "请目标检测图像中的证书编码并给出边界框", "response": "<ref>zs_code</ref><box>[[90,484,329,508]]</box>", "images": "/home/super/lyq/zsbm_mbjc/data/train/pic/xxx-本科毕业证.jpg"}

其中内容大概如上,人名已脱敏。

数据集于swift框架进行注册:
可参考我的历史文章

https://blog.csdn.net/qq_43128256/article/details/140314241

模型微调

本文不再采取UI,纯指令如下:

CUDA_VISIBLE_DEVICES=0,1,2,3  swift sft \
--model_id_or_path /data/hfd/InternVL2-8B \
--template_type internvl2 \
--dataset /home/super/lyq/train_dataset.jsonl \
--lora_target_modules ALL \
--lora_lr_ratio 16.0 \
--lora_rank 16 \
--learning_rate 1e-4 \
--num_train_epochs 5 \
--use_flash_attn True \
--gradient_accumulation_steps 4 \
--batch_size 2 \
--eval_steps 50 \
--save_steps 500 \
--neftune_noise_alpha 5 \
--model_type internvl2-8b \
--device_max_memory 15GB 15GB 15GB 15GB \
--output_dir /home/super/sgq/swift/llm-yolo/detection2/v1 \
--logging_dir /home/super/sgq/swift/llm-yolo/detection2/v1/runs

其中需注意:

–model_id_or_path /data/hfd/InternVL2-8B
该参数为模型路径

–dataset /home/super/lyq/train_dataset.jsonl
该参数为微调数据集

–num_train_epochs 5
该参数为训练轮次,视情况调整

–use_flash_attn True
加速项,服务器未配置可不选

–output_dir /home/super/sgq/swift/llm-yolo/detection2/v1
为训练结果保存路径,结果包含微调训练参数和精度损失记录等

–logging_dir /home/super/sgq/swift/llm-yolo/detection2/v1/runs
为tensorboard查看结果内容存储路径

结果如上,其中checkpoint-135为训练后的lora权重;images为训练曲线;其他文件为训练参数。


训练后的模型部署及测试

合并权重

CUDA_VISIBLE_DEVICES=0,1,2,3 swift export --ckpt_dir '/home/super/lyq/zsbm_mbjc/train_240731_1/internvl2-8b/v0-20240731-154920/checkpoint-135' --merge_lora true

生成合并模型:

推理部署

测试

api_ask.py

from openai import OpenAI
import base64

client = OpenAI(api_key='YOUR_API_KEY', base_url='http://172.20.32.127:23333/v1')
model_name = client.models.list().data[0].id

#图片转base64函数
def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')


 
#原图片转base64
def get_response(input_image_path):
  base64_image = encode_image(input_image_path)
  response = client.chat.completions.create(
      model=model_name,
      messages=[
          {
              "role": "system",
              "content": '''职位:你是一个面向证书图像的目标检测大师,具备精准识别、定位图像中证书编码的能力。
        职能:从毕业证、学历验证报告、证书等图像中检测到证书编码区域并给出边界框。
        **注意**:仅以给定格式返回检测结果,不要给出其它任何解释。
        **注意**:若图片中没有典型违章场景,返回<ref> class_name </ref><box>[[0, 0, 0, 0]]</box>即可。
        '''
          },
          {
              "role": "user",
              "content":[
              {
            "type": "text",
            "text": '请目标检测图像中的证书编码并给出边界框'
          },
                      {
            "type": "image_url",
            "image_url":{
              "url":f"data:image/jpeg;base64,{base64_image}"
              # "url": 'https://i-blog.csdnimg.cn/direct/253ad27104b7466792511f78e9f636a9.png'
            }
          },
          ]
          }
      ],
      temperature=0.8,
      top_p=0.8)
  return response.choices[0].message.content

get_llm_response.py

import json
import api_ask as llm_api
def read_jsonl(file_path):
    """
    Read a JSONL file and return a list of dictionaries.

    :param file_path: Absolute path of the JSONL file to be read.
    :return: List of dictionaries representing the JSON objects in the file.
    """
    data = []
    with open(file_path, 'r', encoding='utf-8') as file:
        for line in file:
            data.append(json.loads(line))
    return data


data = read_jsonl('/home/super/lyq/test_dataset.jsonl')


result = []
for single_data in data:
    img_path = single_data['images']
    single_result = llm_api.get_response(img_path)
    print(single_result)
    result.append({'images':img_path,'response':single_result})

import pandas as pd

pd.DataFrame(result).to_excel('llm_response.xlsx',index=False)

结果如下图:

result_test.py

import pandas as pd
from PIL import Image, ImageDraw
import re
import json
from PIL import Image, ExifTags
# 添加这个函数来处理图片方向
def correct_image_orientation(image):
    try:
        for orientation in ExifTags.TAGS.keys():
            if ExifTags.TAGS[orientation] == 'Orientation':
                break
        exif = dict(image._getexif().items())

        if exif[orientation] == 3:
            image = image.rotate(180, expand=True)
        elif exif[orientation] == 6:
            image = image.rotate(270, expand=True)
        elif exif[orientation] == 8:
            image = image.rotate(90, expand=True)
    except (AttributeError, KeyError, IndexError):
        # 如果没有EXIF信息,就不做任何处理
        pass
    return image

def draw_rectangle(image_path, coordinates, output_path):
    """
    在图像上标出矩形框。

    :param image_path: 图像的路径
    :param coordinates: 包含矩形框坐标的列表,格式为 [x1, y1, x2, y2]
    :param output_path: 输出图像的路径
    """
    # 打开图像
    with Image.open(image_path) as img:
        img = correct_image_orientation(img)
        img = correct_image_orientation(img)
        # 创建一个可以在给定图像上绘图的对象
        draw = ImageDraw.Draw(img)
        # 计算矩形的左上角和右下角坐标
        x1, y1, x2, y2 = coordinates
        # 在图像上绘制矩形
        draw.rectangle([x1, y1, x2, y2], outline="red", width=2)
        # 保存修改后的图像
        img.save(output_path)


def extract_string(s):
    """
    从给定的字符串中提取方括号内的内容。

    :param s: 包含方括号的字符串
    :return: 提取出的字符串
    """
    # 使用正则表达式匹配方括号内的内容
    match = re.search(r'\[(.*?)\]', s)
    if match:
        # 提取匹配的内容
        extracted_str = match.group(0)
        return eval(extracted_str+']')
    else:
        return None



def read_jsonl(file_path):
    """
    读取JSONL文件并返回一个包含所有条目的列表。

    :param file_path: JSONL文件的路径
    :return: 包含JSON对象的列表
    """
    data = []
    with open(file_path, 'r', encoding='utf-8') as file:
        for line in file:
            data.append(json.loads(line))
    return data


data = pd.read_excel('/home/super/lyq/llm_response.xlsx')

images = data['images'].tolist()
responses = data['response'].tolist()
n = len(images)

print(images)
for index in range(n):
    print(images[index])
    img_path = images[index]
    zuobiao = extract_string(responses[index])
    draw_rectangle(img_path,zuobiao[0],'/home/super/lyq/zsbm_mbjc/test_result_pic'+'/'+img_path.split('/')[-1])


总结

实际上,interVL2-8B多模态大模型在该任务上微调后的表现并不好。与此同时,我们还就电力巡检场景进行了微调测试,精度达到了80左右,其实也比较一般,综合来看,大模型其实并不那么擅长目标检测。

此处引申一个结论,大模型在分类任务上表现则好得多,且提升精度微调是必要的。
最近做了实验,测试集微调前精度57%,微调后97%,不过面向的是单轮问答。

版权说明:如非注明,本站文章均为 扬州驻场服务-网络设备调试-监控维修-南京泽同信息科技有限公司 原创,转载请注明出处和附带本文链接

请在这里放置你的在线分享代码
«    2024年12月    »
1
2345678
9101112131415
16171819202122
23242526272829
3031
控制面板
您好,欢迎到访网站!
  查看权限
网站分类
搜索
最新留言
    文章归档
    网站收藏
    友情链接